题目内容
2.复数z=$\frac{(i-1)^{2}+4}{i+1}$的虚部为( )| A. | -1 | B. | -3 | C. | 1 | D. | 2 |
分析 直接利用复数代数形式的乘除运算化简得答案.
解答 解:∵z=$\frac{(i-1)^{2}+4}{i+1}$=$\frac{-2i+4}{1+i}=\frac{(4-2i)(1-i)}{(1+i)(1-i)}=\frac{2-6i}{2}=1-3i$,
∴复数z=$\frac{(i-1)^{2}+4}{i+1}$的虚部为-3.
故选:B.
点评 本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.
练习册系列答案
相关题目
15.设△ABC的内角A、B、C的对边分别为a、b、c,若a=1,c=$\sqrt{3}$,cosA=$\frac{\sqrt{3}}{2}$,且b<c,则b=( )
| A. | 1 | B. | $\frac{\sqrt{3}}{2}$ | C. | $\sqrt{2}$ | D. | 2 |
13.
一个几何体的三视图是如图所示的边长为2的正方形,其中P,Q,S,T为各边的中点,则此几何体的表面积是( )
| A. | 21 | B. | $\frac{43}{2}$ | C. | $\frac{45}{2}$ | D. | 23 |
7.已知x∈(0,π),且cos(2x-$\frac{π}{2}$)=sin2x,则tan(x-$\frac{π}{4}$)等于( )
| A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | 3 | D. | -3 |