题目内容


已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点的平行线交曲线两个不同的点.

(Ⅰ)求曲线的方程;

(Ⅱ)试探究的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;

(Ⅲ)记的面积为的面积为,令,求的最大值.


(I)设圆心的坐标为,半径为

由于动圆与圆相切,且与圆相内切,所以动

与圆只能内切

 ………………………………………2分

圆心的轨迹为以为焦点的椭圆,其中

故圆心的轨迹 …………………………………………………………4分

(II)设,直线,则直线

可得:

 ……………………………6分

可得:

………………………………8分

的比值为一个常数,这个常数为……………………………………9分

(III)的面积的面积,

到直线的距离

 …………………………11分

,则

(当且仅当,即,亦即时取等号)

时,取最大值……………………………………………………13分


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网