题目内容

设直线y=2x-1交曲线C于A(x1,y1),B(x2,y2)两点,
(1)若|x1-x2|=
2
,则|AB|=
 

(2)|y1-y2|=
2
,则|AB|=
 
分析:(1)根据题意,可得KAB=
y1-y2
x1-x2
=2,即(y1-y2)=2(x1-x2),化简可得|AB|=
(x1-x2)2+(y1-y2)2
=
5
|x1-x2|,进而可得答案,
(2)由(1)的关系,化简可得|AB|=
5
5
|x1-x2|,计算可得答案.
解答:解:(1)KAB=
y1-y2
x1-x2
=2,即(y1-y2)=2(x1-x2),
|AB|=
(x1-x2)2+(y1-y2)2
=
5
|x1-x2|=
5
×
2
=
10

(2)由(1)可得,(y1-y2)=2(x1-x2),
|AB|=
(x1-x2)2+(y1-y2)2
=
5
5
|x1-x2|=
2
×
5
5
=
10
5
点评:本题考查两点间的距离公式的运用,注意结合直线的斜率,进行简化计算、求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网