题目内容

6.已知平行六面体ABCD-A1B1C1D1,底面ABCD是边长为1的正方形,AA1=2,∠A1AB=∠A1AD=120°,则异面直线AC1与A1D所成角的余弦值为(  )
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{\sqrt{15}}{5}$D.$\frac{{\sqrt{14}}}{7}$

分析 解:设$\overrightarrow{AB}=\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,$\overrightarrow{C{C}_{1}}$=$\overrightarrow{c}$,则$\overrightarrow{A{C}_{1}}$=$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}$,$\overrightarrow{{A}_{1}D}$=$\overrightarrow{b}-\overrightarrow{c}$,由此利用向量法能求出异面直线AC1与A1D所成角的余弦值.

解答 解:设$\overrightarrow{AB}=\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,$\overrightarrow{C{C}_{1}}$=$\overrightarrow{c}$,
则$\overrightarrow{A{C}_{1}}$=$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}$,$\overrightarrow{{A}_{1}D}$=$\overrightarrow{b}-\overrightarrow{c}$,
∵平行六面体ABCD-A1B1C1D1,底面ABCD是边长为1的正方形,AA1=2,∠A1AB=∠A1AD=120°,
∴$\overrightarrow{A{C}_{1}}•\overrightarrow{{A}_{1}D}$=($\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}$)•($\overrightarrow{b}-\overrightarrow{c}$)
=$\overrightarrow{a}•\overrightarrow{b}-\overrightarrow{a}•\overrightarrow{c}+{\overrightarrow{b}}^{2}-\overrightarrow{b}•\overrightarrow{c}+\overrightarrow{b}•\overrightarrow{c}-{\overrightarrow{c}}^{2}$
=1+1-4=-2,
$|\overrightarrow{{A}_{1}D}{|}^{2}$=($\overrightarrow{b}-\overrightarrow{c}$)2=${\overrightarrow{b}}^{2}+{\overrightarrow{c}}^{2}-2\overrightarrow{b}•\overrightarrow{c}$=1+4+2=7,
|$\overrightarrow{A{C}_{1}}$|2=($\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}$)2=${\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}+{\overrightarrow{c}}^{2}$-2$\overrightarrow{a}•\overrightarrow{c}$+2$\overrightarrow{a}•\overrightarrow{b}$+2$\overrightarrow{b}•\overrightarrow{c}$
=1+1+4-2-2=2,
∴$|\overrightarrow{{A}_{1}D}|$=$\sqrt{7}$,$|\overrightarrow{A{C}_{1}}|$=$\sqrt{2}$,
∴cos<$\overrightarrow{A{C}_{1}},\overrightarrow{{A}_{1}D}$>=$\frac{\overrightarrow{A{C}_{1}}•\overrightarrow{{A}_{1}D}}{|\overrightarrow{A{C}_{1}}|•|\overrightarrow{{A}_{1}D}|}$=$\frac{-2}{\sqrt{2}×\sqrt{7}}$=-$\frac{\sqrt{14}}{7}$.
∴异面直线AC1与A1D所成角的余弦值为$\frac{\sqrt{14}}{7}$.
故选:D.

点评 本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网