题目内容
函数y=8x2-lnx的单调减区间是 ,极小值是 .
【答案】分析:先求出其导函数f'(x)=16x-
=
=
,利用导函数值的正负来求其单调区间,进而求得其极值.(注意是在定义域内研究其单调性)
解答:解:因为y=f(x)=8x2-lnx,
∴f'(x)=16x-
=
=
∵x>0
∴当x>
时,f'(x)>0,即f(x)递增;
当0<x<
时,f'(x)<0,f(x)递减.
且f(x) 极小值为f(
)=8×
-ln
=
+2ln2.
故答案为:(0,
),
+2ln2.
点评:本题主要考查利用导数研究函数的极值以及函数的单调性,利用导数研究函数的单调性,求解函数的单调区间、极值、最值问题,是函数这一章最基本的知识,也是教学中的重点和难点,学生应熟练掌握.
解答:解:因为y=f(x)=8x2-lnx,
∴f'(x)=16x-
∵x>0
∴当x>
当0<x<
且f(x) 极小值为f(
故答案为:(0,
点评:本题主要考查利用导数研究函数的极值以及函数的单调性,利用导数研究函数的单调性,求解函数的单调区间、极值、最值问题,是函数这一章最基本的知识,也是教学中的重点和难点,学生应熟练掌握.
练习册系列答案
相关题目