题目内容
已知f(x)=3sinxcosx-
cos2x+2sin2(x-
)+
.
(1)求f(x)的最小正周期和它的单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=
,f(A)=1,求角C.
| 3 |
| π |
| 12 |
| ||
| 2 |
(1)求f(x)的最小正周期和它的单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=
| 2 |
分析:(1)利用三角函数间的关系式可化简f(x)=2sin(2x-
)+1,利用正弦函数的性质可求得f(x)的最小正周期和它的单调递增区间;
(2)由f(A)=2sin(2A-
)+1=1可求得A,利用正弦定理可求得B,继而可得到C.
| π |
| 3 |
(2)由f(A)=2sin(2A-
| π |
| 3 |
解答:解:(1)∵f(x)=3sinxcosx-
cos2x+2sin2(x-
)+
=
sin2x-
×
+1-cos(2x-
)+
=
sin2x-
cos2x-cos(2x-
)+1
=
sin(2x-
)-cos(2x-
)+1
=2sin(2x-
)+1,
∴f(x)的最小正周期T=
=π;
由2kπ-
≤2x-
≤2kπ+
,(k∈Z)得:
kπ-
≤x≤kπ+
,(k∈Z)
∴f(x)的单调递增区间为[kπ-
,kπ+
],(k∈Z)
(2)在△ABC中,∵f(A)=1,
∴2sin(2A-
)+1=1,
∴sin(2A-
)=0,A为△ABC中的内角,
∴2A-
=0,故A=
.
又在△ABC中a=1,b=
,由正弦定理得:
=
,
∴sinB=
=
=
,
∴B=
或B=
;
∴当B=
时,C=π-
-
=
;
当B=
时,C=π-
-
=
.
| 3 |
| π |
| 12 |
| ||
| 2 |
=
| 3 |
| 2 |
| 3 |
| 1+cos2x |
| 2 |
| π |
| 6 |
| ||
| 2 |
=
| 3 |
| 2 |
| ||
| 2 |
| π |
| 6 |
=
| 3 |
| π |
| 6 |
| π |
| 6 |
=2sin(2x-
| π |
| 3 |
∴f(x)的最小正周期T=
| 2π |
| 2 |
由2kπ-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
kπ-
| π |
| 12 |
| 5π |
| 12 |
∴f(x)的单调递增区间为[kπ-
| π |
| 12 |
| 5π |
| 12 |
(2)在△ABC中,∵f(A)=1,
∴2sin(2A-
| π |
| 3 |
∴sin(2A-
| π |
| 3 |
∴2A-
| π |
| 3 |
| π |
| 6 |
又在△ABC中a=1,b=
| 2 |
| a |
| sinA |
| b |
| sinB |
∴sinB=
| bsinA |
| a |
| ||||
| 1 |
| ||
| 2 |
∴B=
| π |
| 4 |
| 3π |
| 4 |
∴当B=
| π |
| 4 |
| π |
| 6 |
| π |
| 4 |
| 7π |
| 12 |
当B=
| 3π |
| 4 |
| π |
| 6 |
| 3π |
| 4 |
| π |
| 12 |
点评:本题考查三角函数中的恒等变换应用,考查正弦定理解三角形,考查正弦函数的周期性与单调性,属于难题.
练习册系列答案
相关题目
已知f(x)=
sinx+cosx(x∈R),函数y=f(x+φ)的图象关于(0,0)对称,则φ的值可以是( )
| 3 |
A、-
| ||
B、
| ||
C、-
| ||
D、
|