题目内容

若f(a+b)=f(a)•f(b)且f (1)=2,则
f(2)
f(1)
+
f(4)
f(3)
+
f(6)
f(5)
+…+
f(2010)
f(2009)
=
 
分析:由已知f(a+b)=f(a)•f(b)且f (1)=2,令b=1,可得
f(a+1)
f(a)
=2,进而可将
f(2)
f(1)
+
f(4)
f(3)
+
f(6)
f(5)
+…+
f(2010)
f(2009)
化为2×1005,从而得到答案.
解答:解:∵f(a+b)=f(a)•f(b)
∴f(a+1)=f(a)•f(1)
f(a+1)
f(a)
=f (1)=2
f(2)
f(1)
+
f(4)
f(3)
+
f(6)
f(5)
+…+
f(2010)
f(2009)
=2×1005=2010
故答案为:2010
点评:本题考查的知识点是抽象函数及其应用,其中根据已知中f(a+b)=f(a)•f(b)且f (1)=2,得到
f(a+1)
f(a)
=2是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网