题目内容
已知两个单位向量,的夹角为,,若,则___( )
A.1 B.-1 C.2 D.-2
C
【解析】因为,故,故.
某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,…,后得到如右图的频率分布直方图.
(1)求图中实数的值;
(2)若该校高一年级共有学生640人,试估计该校高一年级
期中考试数学成绩不低于60分的人数;
已知x=1是函数的一个极值点,
(Ⅰ)求a的值;
(Ⅱ)当时,证明:
已知奇函数则的值为 .
已知左焦点为的椭圆过点.过点分别作斜率为的椭圆的动弦,设分别为线段的中点.
(1)求椭圆的标准方程;
(2)若为线段的中点,求;
(3)若,求证直线恒过定点,并求出定点坐标.
已知一元二次不等式的解集为{,则的解集为 .
2014年巴西世界杯小组抽签结果中,D组被称为“死亡之组”.乌拉圭、英格兰、意大利三个前世界杯冠军与哥斯达黎加分在D组. 乌拉圭、英格兰、意大利三队拟进行一次热身赛。已知他们在最近的战绩如下:意大利与英格兰的最近10战中,意大利6胜2平2负占优,意大利与乌拉圭史上交战8场,乌拉圭2胜4平2负平分秋色,英格兰与乌拉圭史上交战10场,乌拉圭4胜3平3负稍占优势.小组赛采取单循环赛制(不分主客场,每个对手间只打一场),胜一场积3分,平一场积1分,负一场积0分.在英格兰、乌拉圭、意大利三支球队中:
(1)求乌拉圭取得6分的概率;
(2)求乌拉圭得分的期望.
若实数满足条件,则的最大值为
已知圆:,圆与圆关于直线对称,则圆
的方程为
A. B.
C. D.