题目内容
设
=(t,1)(t∈Z),
=(2,4),满足|
|≤3,则当△OAB是直角三角形时t的值为______.
| OA |
| OB |
| OA |
∵OB=2
>OA
∴1°当∠AOB=90°时,有2t+4=0,
解得t=-2,
2°当∠OBA=90°时,有
=
-
=(t-2,-3)
∴
•
=2(t-2)-12=0,
解得t=8,
因为|
|≤3,所以t=8,不满足题意,舍去,
3°当∠OAB=90°,
•
=0,
t(t-2)-3=0,解得t=-1或t=3(舍去);
综上t=-2,或t=-1;
故答案为:-2或-1.
| 5 |
∴1°当∠AOB=90°时,有2t+4=0,
解得t=-2,
2°当∠OBA=90°时,有
| BA |
| OA |
| OB |
∴
| OB |
| BA |
解得t=8,
因为|
| OA |
3°当∠OAB=90°,
| OA |
| BA |
t(t-2)-3=0,解得t=-1或t=3(舍去);
综上t=-2,或t=-1;
故答案为:-2或-1.
练习册系列答案
相关题目