题目内容
【题目】将向量
=(
,
),
=(
,
),…
=(
,
)组成的系列称为向量列{
},并定义向量列{
}的前
项和
.如果一个向量列从第二项起,每一项与前一项的差都等于同一个向量,那么称这样的向量列为等差向量列。若向量列{
}是等差向量列,那么下述四个向量中,与
一定平行的向量是 ( )
A.
B.
C.
D. ![]()
【答案】B
【解析】依题意,当
为等差向量列时,设每一项与前一项的差都等于
,则可求出通项公式
,所以
前21项和
,故与
平行的向量是
,选B.
点睛: 本题主要考查新定义: 等差向量列的理解和应用, 属于中档题. 解题思路:设每一项与前一项的差都等于
,运用类似等差数列的通项和求和公式,计算可得
,由向量共线定理,可得出结论. 考查类比的数学思想方法和向量共线定理的运用.
练习册系列答案
相关题目
【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取
名学生作为样本,得到这
名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
| 10 | 0.25 |
| 25 |
|
|
|
|
| 2 | 0.05 |
合计 |
| 1 |
![]()
(1)求出表中
及图中
的值;
(2)试估计他们参加社区服务的平均次数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少1人参加社区服务次数在区间
内的概率.