题目内容

15.已知函数f(x)=$\left\{\begin{array}{l}{(a-\frac{1}{2})x-2a+1,x≥1}\\{{a}^{x},x<1}\end{array}\right.$,在R上为减函数,则实数a的取值范围为[$\frac{1}{4}$,$\frac{1}{2}$).

分析 若函数f(x)=$\left\{\begin{array}{l}{(a-\frac{1}{2})x-2a+1,x≥1}\\{{a}^{x},x<1}\end{array}\right.$,在R上为减函数,则$\left\{\begin{array}{l}a-\frac{1}{2}<0\\ 0<a<\frac{1}{2}\\ a-\frac{1}{2}-2a+1≤a\end{array}\right.$,解得数a的取值范围.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{(a-\frac{1}{2})x-2a+1,x≥1}\\{{a}^{x},x<1}\end{array}\right.$,在R上为减函数,
$\left\{\begin{array}{l}a-\frac{1}{2}<0\\ 0<a<\frac{1}{2}\\ a-\frac{1}{2}-2a+1≤a\end{array}\right.$,
解得:a∈[$\frac{1}{4}$,$\frac{1}{2}$),
故答案为:[$\frac{1}{4}$,$\frac{1}{2}$)

点评 本题考查的知识点是分段函数的应用,正确理解分段函数单调性的意义,是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网