搜索
题目内容
函数f(x)=(x-2)e
x
的单调递增区间是______.
试题答案
相关练习册答案
函数的导数为f'(x)=e
x
+(x-2)e
x
=(x-1)e
x
,
由f'(x)=(x-1)e
x
>0得x>1.
所以函数的单调递增区间为(1,+∞).
故答案为:(1,+∞).
练习册系列答案
课课练与单元测试系列答案
世纪金榜小博士单元期末一卷通系列答案
单元测试AB卷台海出版社系列答案
黄冈新思维培优考王单元加期末卷系列答案
名校名师夺冠金卷系列答案
小学英语课时练系列答案
培优新帮手系列答案
天天向上一本好卷系列答案
小学生10分钟应用题系列答案
课堂作业广西教育出版社系列答案
相关题目
设函数f(x)=a
2
x
2
(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)
2
>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设
a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
定义域为R的函数f(x)满足条件:
①
[f(
x
1
)-f(
x
2
)](
x
1
-
x
2
)>0,(
x
1
,
x
2
∈
R
+
,
x
1
≠
x
2
)
;
②f(x)+f(-x)=0(x∈R);
③f(-3)=0.
则不等式x•f(x)<0的解集是( )
A.{x|-3<x<0或x>3}
B.{x|x<-3或0≤x<3}
C.{x|x<-3或x>3}
D.{x|-3<x<0或0<x<3}
已知函数f(x)=x
3
-2x
2
-4x-7.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求a>2时,证明:对于任意的x>2且x≠a,恒有f(x)>f(a)+f'(a)(x-a);
(Ⅲ)设x
0
是函数y=f(x)的零点,实数α满足
f(α)>0,β=α-
f(α)
f′(α)
,试探究实数α、β、x
0
的大小关系.
已知函数f(x)=Asin(ωx+φ),x∈R(其中
A>0,ω>0,0<φ<
π
2
)的振幅为
2
,周期为π,且图象关于直线
x=
π
8
对称.
(Ⅰ)求f(x)的解析式;
(Ⅱ)将函数y=sinx的图象作怎样的变换可以得到f(x)的图象?
设函数f(x)=a
2
x
2
(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
2
,求a的值;
(2)关于x的不等式(x-1)
2
>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设
a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案