题目内容
18.抛掷一枚硬币,记$X=\left\{\begin{array}{l}1,{\;}^{\;}正面向上\\-1,反面向上\end{array}\right.$,则E(X)=( )| A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | -1 |
分析 由题意P(X=1)=$\frac{1}{2}$,P(X=-1)=$\frac{1}{2}$,由此能求出E(X).
解答 解:∵抛掷一枚硬币,记$X=\left\{\begin{array}{l}1,{\;}^{\;}正面向上\\-1,反面向上\end{array}\right.$,
P(X=1)=$\frac{1}{2}$,P(X=-1)=$\frac{1}{2}$,
∴E(X)=1×$\frac{1}{2}+(-1)×\frac{1}{2}$=0.
故选:A.
点评 本题考查离散型随机变量的数学期望的求法,是基础题,解题时要认真审题,注意数学期望的性质的合理运用.
练习册系列答案
相关题目
8.过M(1,3)引圆x2+y2=2的切线,切点分别为A、B,则△AMB的面积为( )
| A. | $\frac{32}{5}$ | B. | 4 | C. | $\frac{16}{5}$ | D. | $\frac{8}{5}$ |
6.
某学校有120名教师,且年龄都在20岁到60岁之间,各年龄段人数按分组,其频率分布直方图如图所示,学校要求每名教师都要参加两项培训,培训结束后进行结业考试.已知各年龄段两项培训结业考试成绩优秀的人数如表示,假设两项培训是相互独立的,结业考试成绩也互不影响.
(1)若用分层抽样法从全校教师中抽取一个容量为40的样本,求从年龄段[20,30)抽取的人数;
(2)求全校教师的平均年龄;
(3)随机从年龄段[20,30)和[30,40)内各抽取1人,设这两人中两项培训结业考试成绩都优秀的人数为X,求X的概率分布和数学期望.
| 年龄分组 | A项培训成绩优秀人数 | B项培训成绩优秀人数 |
| [20,30) | 30 | 18 |
| [30,40) | 36 | 24 |
| [40,50) | 12 | 9 |
| [50,60] | 4 | 3 |
(2)求全校教师的平均年龄;
(3)随机从年龄段[20,30)和[30,40)内各抽取1人,设这两人中两项培训结业考试成绩都优秀的人数为X,求X的概率分布和数学期望.