题目内容
在数列{an}中,a1=2,an+1=2an-n+1,n∈N*
(I)证明数列{an-n}是等比数列;
(II)设bn=
,求数列{bn}的前n项和Sn.
(I)证明数列{an-n}是等比数列;
(II)设bn=
| an |
| 2n |
(I)由题设an+1=2an-n+1,可得an+1-(n+1)=2(an-n),
又a1-1=1,所以数列{an-n}首项为1,公比为2的等比数列;
(II)由(I)可知an-n=2n-1,于是数列{an}的通项公式为an=2n-1+n,
所以数列bn=
=
+n(
)n,
所以Sn=
+[1•
+2•
+3•
+…+(n-1)
+n
],
设Tn=1•
+2•
+3•
+…+(n-1)
+n
①
所以
Tn=1•
+2•
+3•
+…+(n-1)
+n
②
①-②可得
Tn=
+
+
+…+
-n
=
-n
=1-
-n
=1-
,
故Tn=2-
,故Sn=
+2-
=
-
又a1-1=1,所以数列{an-n}首项为1,公比为2的等比数列;
(II)由(I)可知an-n=2n-1,于是数列{an}的通项公式为an=2n-1+n,
所以数列bn=
| an |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 |
所以Sn=
| n |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
设Tn=1•
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
所以
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
①-②可得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
=
| ||||
1-
|
| 1 |
| 2n+1 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| n+2 |
| 2n+1 |
故Tn=2-
| n+2 |
| 2n |
| n |
| 2 |
| n+2 |
| 2n |
| n+4 |
| 2 |
| n+2 |
| 2n |
练习册系列答案
相关题目