题目内容
【题目】已知直线
:
与圆
相交的弦长等于椭圆
:
(
)的焦距长.
(1)求椭圆
的方程;
(2)已知
为原点,椭圆
与抛物线
(
)交于
、
两点,点
为椭圆
上一动点,若直线
、
与
轴分别交于
、
两点,求证:
为定值.
【答案】(1)
(2)见解析
【解析】【试题分析】(1)利用圆心到直线的距离计算出直线与圆相交的弦长,得到
.利用
求得
,得到椭圆方程.(2)设出
三个点的坐标,利用点斜式写出直线
的方程,令
求得
两点的坐标,代入
并利用
两点在椭圆上进行化简.
【试题解析】
解:(1)由题意知,圆心
到直线
的距离为
,圆的半径为
,
直线与圆相交的弦长为
,则
,
,
又∵
,∴
,
∴椭圆
的方程
.
(2)证明:由条件可知,
,
两点关于
轴对称,设
,
,则
由题可知,
,
,所以
,
.
又直线
的方程为
,令
得点
的横坐标
,
同理可得
点的横坐标
,
所以![]()
,
即
为定值.
【题目】2017年5月14日,第一届“一带一路”国际高峰论坛在北京举行,为了解不同年龄的人对“一带一路”关注程度,某机构随机抽取了年龄在15-75岁之间的100人进行调查, 经统计“青少年”与“中老年”的人数之比为9:11
关注 | 不关注 | 合计 | |
青少年 | 15 | ||
中老年 | |||
合计 | 50 | 50 | 100 |
(1)根据已知条件完成上面的
列联表,并判断能否有
的把握认为关注“一带一路”是否和年龄段有关?
(2)现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“一带一路”的人数为X,求X的分布列及数学期望.
附:参考公式
,其中![]()
临界值表:
| 0.05 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
【题目】世界那么大,我想去看看,处在具有时尚文化代表的大学生们旅游动机强烈,旅游可支配收入日益增多,可见大学生旅游是一个巨大的市场.为了解大学生每年旅游消费支出(单位:百元)的情况,相关部门随机抽取了某大学的
名学生进行问卷调查,并把所得数据列成如下所示的频数分布表:
组别 |
|
|
|
|
|
频数 |
|
|
|
|
|
(Ⅰ)求所得样本的中位数(精确到百元);
(Ⅱ)根据样本数据,可近似地认为学生的旅游费用支出
服从正态分布
,若该所大学共有学生
人,试估计有多少位同学旅游费用支出在
元以上;
(Ⅲ)已知样本数据中旅游费用支出在
范围内的
名学生中有
名女生,
名男生,现想选其中
名学生回访,记选出的男生人数为
,求
的分布列与数学期望.
附:若
,则
,
,
.