题目内容

8.已知抛物线C:y2=2px(p>0)和动直线l:y=kx+b(k,b是参变量,且k≠0.b≠0)相交于A(x1,y2),N)x2,y2)两点,直角坐标系原点为O,记直线OA,OB的斜率分别为kOA•kOB=$\sqrt{3}$恒成立,则当k变化时直线l恒经过的定点为(  )
A.(-$\sqrt{3}$p,0)B.(-2$\sqrt{3}$p,0)C.(-$\frac{\sqrt{3}p}{3}$,0)D.(-$\frac{2\sqrt{3}p}{3}$,0)

分析 AB的方程与抛物线方程联立,消去y,由根与系数的关系,利用kOA•kOB=$\sqrt{3}$,求出b的值,即可得出直线AB过定点.

解答 解:将直线与抛物线联立,消去y,得k2x2+(2kb-2p)x+b2=0,
∴x1+x2=$\frac{-2kb+2p}{{k}^{2}}$,x1x2=$\frac{{b}^{2}}{{k}^{2}}$;
∵kOA•kOB=$\sqrt{3}$,∴y1y2=$\sqrt{3}$x1x2
∴y1y2=(kx1+b)(kx2+b)
=k2x1x2+kb(x1+x2)+b2
=$\frac{2bp}{k}$;
∴$\frac{2bp}{k}$=$\sqrt{3}$•$\frac{{b}^{2}}{{k}^{2}}$,
解得b=$\frac{2pk}{\sqrt{3}}$,
∴y=kx+$\frac{2pk}{\sqrt{3}}$=k(x+$\frac{2p}{\sqrt{3}}$)
令x=-$\frac{2p}{\sqrt{3}}$,得y=0,
∴直线过定点(-$\frac{2p}{\sqrt{3}}$,0).
故选D.

点评 本题考查了直线与抛物线的综合应用问题,考查韦达定理的运用,属于中档题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网