题目内容
已知sin(α+
)+cosα=
,则sin(α+
π)=( )
| π |
| 6 |
| 2 |
| 5 |
| 3 |
| 4 |
| 3 |
分析:由于sin(α+
)+cosα=
sin(α+
)=
,可求得sin(α+
)=
,利用诱导公式即可求得sin(α+
).
| π |
| 6 |
| 3 |
| π |
| 3 |
2
| ||
| 5 |
| π |
| 3 |
| 2 |
| 5 |
| 4π |
| 3 |
解答:解:∵sin(α+
)+cosα=
sinα+
cosα+cosα
=
sinα+
cosα
=
sin(α+
)=
,
∴sin(α+
)=
.
∴sin(α+
)=-sin(α+
)=-
.
故选C.
| π |
| 6 |
| ||
| 2 |
| 1 |
| 2 |
=
| ||
| 2 |
| 3 |
| 2 |
=
| 3 |
| π |
| 3 |
2
| ||
| 5 |
∴sin(α+
| π |
| 3 |
| 2 |
| 5 |
∴sin(α+
| 4π |
| 3 |
| π |
| 3 |
| 2 |
| 5 |
故选C.
点评:本题考查两角和与差的正弦函数,考查诱导公式在化简求值中的应用,属于中档题.
练习册系列答案
相关题目
已知sin(
-α)=
,则cos(
+2a)的值是( )
| π |
| 6 |
| 1 |
| 3 |
| 2π |
| 3 |
A、-
| ||
B、-
| ||
C、
| ||
D、
|
已知sin(α-
)-cosα=
,则cos(α+
)的值是( )
| π |
| 6 |
3
| ||
| 5 |
| 7π |
| 6 |
A、-
| ||||
B、
| ||||
C、-
| ||||
D、
|