题目内容

14.已知{an}是正项等差数列,?n∈N*,数列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n项和Sn=$\frac{n}{2n+4}$.
(Ⅰ)求an
(Ⅱ)设bn=(-1)nan2,n∈N*,求数列{bn}的前n项和Tn

分析 (I)设正项等差数列{an}的公差为d,由$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{d}(\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}})$.利用“裂项求和”可得:数列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n项和Sn=$\frac{1}{d}$$(\frac{1}{{a}_{1}}-\frac{1}{{a}_{n+1}})$=$\frac{n}{2n+4}$.
分别取n=1,2即可得出.
(II)bn=(-1)nan2=(-1)n(n+1)2,可得:b2k-1+b2k=-(n+1)2+(n+2)2=2n+3.当n=2k(k∈N*)时,数列{bn}的前n项和Tn=(b1+b2)+(b3+b4)+…+(b2k-1+b2k),即可得出.当n=2k-1(k∈N*)时,数列{bn}的前n项和Tn=Tn-1+an,即可得出.

解答 解:(I)设正项等差数列{an}的公差为d,
∵$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{d}(\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}})$.
∴数列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n项和Sn=$\frac{1}{d}$$[(\frac{1}{{a}_{1}}-\frac{1}{{a}_{2}})$+$(\frac{1}{{a}_{2}}-\frac{1}{{a}_{3}})$+…+$(\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}})]$
=$\frac{1}{d}$$(\frac{1}{{a}_{1}}-\frac{1}{{a}_{n+1}})$=$\frac{n}{2n+4}$.
n=1时,$\frac{1}{d}(\frac{1}{{a}_{1}}-\frac{1}{{a}_{1}+d})$=$\frac{1}{6}$
n=2时,$\frac{1}{d}(\frac{1}{{a}_{1}}-\frac{1}{{a}_{1}+2d})$=$\frac{2}{2×2+4}$=$\frac{1}{4}$,
化简解得:a1=2,d=1.
∴an=2+(n-1)=n+1.
(II)bn=(-1)nan2=(-1)n(n+1)2
∴b2k-1+b2k=-(n+1)2+(n+2)2=2n+3.
当n=2k(k∈N*)时,数列{bn}的前n项和Tn=(b1+b2)+(b3+b4)+…+(b2k-1+b2k
=(2×1+3)+(2×2+3)+…+(2×k+3)
=$2×\frac{k(k+1)}{2}$+3k
=k2+4k
=$\frac{{n}^{2}}{4}$+2n.
当n=2k-1(k∈N*)时,数列{bn}的前n项和Tn=Tn-1+an
=$\frac{(n-1)^{2}}{4}+2(n-1)$-(n+1)2
=$-\frac{3{n}^{2}+2n+11}{4}$.
∴Tn=$\left\{\begin{array}{l}{\frac{{n}^{2}}{4}+2n,n为偶数}\\{-\frac{3{n}^{2}+2n+11}{4},n为奇数}\end{array}\right.$.

点评 本题考查了等差数列的通项公式及其前n项和公式、“裂项求和”方法,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网