题目内容
2.设四边形ABCD为平行四边形,|$\overrightarrow{AB}$|=8,|$\overrightarrow{AD}$|=3,若点M,N满足$\overrightarrow{DM}$=3$\overrightarrow{MC}$,$\overrightarrow{BN}$=2$\overrightarrow{NC}$,则$\overrightarrow{AM}$•$\overrightarrow{MN}$=9.分析 用$\overrightarrow{AB},\overrightarrow{AD}$表示出$\overrightarrow{AM},\overrightarrow{MN}$,代入数量积计算.
解答 解:∵$\overrightarrow{DM}$=3$\overrightarrow{MC}$,$\overrightarrow{BN}$=2$\overrightarrow{NC}$,∴$\overrightarrow{DM}$=$\frac{3}{4}$$\overrightarrow{DC}$=$\frac{3}{4}$$\overrightarrow{AB}$,$\overrightarrow{MC}=\frac{1}{4}$$\overrightarrow{DC}$=$\frac{1}{4}\overrightarrow{AB}$,$\overrightarrow{CN}$=$\frac{1}{3}$$\overrightarrow{CB}$=-$\frac{1}{3}\overrightarrow{BC}$=-$\frac{1}{3}\overrightarrow{AD}$,
∴$\overrightarrow{AM}$=$\overrightarrow{AD}+\overrightarrow{DM}$=$\overrightarrow{AD}+\frac{3}{4}$$\overrightarrow{AB}$,$\overrightarrow{MN}$=$\overrightarrow{MC}+\overrightarrow{CN}$=$\frac{1}{4}\overrightarrow{AB}-\frac{1}{3}\overline{AD}$.
$\overrightarrow{AM}$•$\overrightarrow{MN}$=($\overrightarrow{AD}+\frac{3}{4}$$\overrightarrow{AB}$)•($\frac{1}{4}\overrightarrow{AB}-\frac{1}{3}\overline{AD}$)=$\frac{3}{16}$${\overrightarrow{AB}}^{2}$-$\frac{1}{3}$${\overrightarrow{AD}}^{2}$=$\frac{3}{16}$×82-$\frac{1}{3}$×32=9.
故答案为:9.
点评 本题考查了平面向量的数量积运算,是基础题.
| A. | $\frac{π}{3}$,$\frac{1}{6}$R3 | B. | $\frac{π}{3}$,$\frac{1}{3}$R3 | C. | $\frac{π}{2}$,$\frac{1}{3}$R3 | D. | $\frac{π}{2}$,$\frac{1}{6}$R3 |
| A. | 20 | B. | 24 | C. | 16 | D. | $16+\frac{3}{2}\sqrt{10}$ |
| A. | f(x)=lnx | B. | f(x)=-x3 | C. | f(x)=log${\;}_{\frac{1}{2}}$x | D. | f(x)=3-x |
| A. | -1 | B. | 1 | C. | i | D. | -i |