题目内容
在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn(Sn-an)+2an=0
(Ⅰ)证明数列{
}是等差数列;
(Ⅱ)求Sn和数列{an}的通项公式an;
(Ⅲ)设b n=
,求数列{bn}的前n项和Tn.
(Ⅰ)证明数列{
| 1 |
| Sn |
(Ⅱ)求Sn和数列{an}的通项公式an;
(Ⅲ)设b n=
| Sn |
| n |
证明:(I)∵当n≥2时,an=Sn-Sn-1,且Sn(Sn-an)+2an=0
∴Sn[Sn-(Sn-Sn-1)]+2(Sn-Sn-1)=0
即Sn•Sn-1+2(Sn-Sn-1)=0
即
-
=
又∵S1=a1=1,故数列{
}是以1为首项,以
为公差的等差数列
(II)由(I)得:
=
∴Sn=
当n≥2时,an=Sn-Sn-1=
∵n=1时,
无意义
故an=
(III)∵bn=
=
=2(
-
)
∴Tn=2(1-
+
-
+…+
-
)=2(1-
)=
∴Sn[Sn-(Sn-Sn-1)]+2(Sn-Sn-1)=0
即Sn•Sn-1+2(Sn-Sn-1)=0
即
| 1 |
| Sn |
| 1 |
| Sn-1 |
| 1 |
| 2 |
又∵S1=a1=1,故数列{
| 1 |
| Sn |
| 1 |
| 2 |
(II)由(I)得:
| 1 |
| Sn |
| n+1 |
| 2 |
∴Sn=
| 2 |
| n+1 |
当n≥2时,an=Sn-Sn-1=
| -2 |
| n(n+1) |
∵n=1时,
| -2 |
| n(n+1) |
故an=
|
(III)∵bn=
| Sn |
| n |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=2(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| 2n |
| n+1 |
练习册系列答案
相关题目