题目内容
集合A={1,2,6},集合B={1,2,3},那么A∪B=( )
| A、{1,2} |
| B、{6} |
| C、{1,2,3,6} |
| D、1,2,3,6 |
考点:并集及其运算
专题:集合
分析:根据集合的基本运算即可得到结论.
解答:
解:∵A={1,2,6},集合B={1,2,3},
∴A∪B={1,2,3,6},
故选:C
∴A∪B={1,2,3,6},
故选:C
点评:本题主要考查集合的基本运算,比较基础.
练习册系列答案
相关题目
已知圆C:(x-1)2+(y-1)2=4与y轴相交于A、B两点,则
•
=( )
| CA |
| CB |
| A、-2 | B、2 | C、4 | D、-4 |
我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且法向量为
=(1,-2)的直线(点法式)方程为:1×(x+3)+(-2)×(y-4)=0,化简得x-2y+11=0.类比以上方法,在空间直角坐标系中,经过点A(1,2,3),且法向量为
=(-1,-2,1)的平面的方程为( )
| n |
| n |
| A、x+2y-z-2=0 |
| B、x-2y-z-2=0 |
| C、x+2y+z-2=0 |
| D、x+2y+z+2=0 |
| E、+ |
在极坐标系中,圆ρ=2sinθ的圆心的极坐标是( )
A、(1,
| ||
B、(1,-
| ||
| C、(1,0) | ||
| D、(1,π) |
用反证法证明命题“若a2m+b2n=0,(a,b∈R,且m,n∈N*),则a,b全为0”时,应假设( )
| A、a,b中至少有一个为0 |
| B、a,b中至少有一个不为0 |
| C、a,b全不为0 |
| D、a,b中只有一个为0 |
已知双曲线C的右焦点为F,过F的直线l与双曲线C交于不同两点A、B,且A、B两点间的距离恰好等于半焦距,若这样的直线l有且仅有两条,则双曲线C的离心率的取值范围为( )
A、(1,
| ||||
B、(1,
| ||||
| C、(2,+∞) | ||||
D、(1,
|
函数y=
,求f(f(6))的值是( )
|
| A、3 | B、4 | C、5 | D、6 |