题目内容

4.如图,已知EB是半圆O的直径,A是BE延长线上一点,AC切半圆O于点D,BC⊥AC于点C,DF⊥EB于点F,若AC=8,BC=6,则DF=(  )
A.3B.4C.$\frac{15}{4}$D.$\frac{7}{2}$

分析 求出AB=10.设圆的半径为r,AD=x,连接OD,推导出x=$\frac{4}{3}$r.由切割线定理AD2=AE•AB,求出r=$\frac{15}{4}$,AD=5,再由$\frac{1}{2}$AD•OD=$\frac{1}{2}$DF•AO,能求出DF.

解答 解:在Rt△ABC中,∵AC⊥BC,∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=$\sqrt{{8}^{2}+{6}^{2}}$=10.
设圆的半径为r,AD=x,连接OD,
∵AC切半圆O于点D,∴OD⊥AC.
∴OD∥BC.
∴$\frac{AD}{AC}$=$\frac{OD}{BC}$,即$\frac{x}{8}$=$\frac{r}{6}$,化为x=$\frac{4}{3}$r.
又由切割线定理AD2=AE•AB,即$\frac{16}{9}$r2=(10-2r)×10,
解得r=$\frac{15}{4}$.∴AD=$\frac{4}{3}×\frac{15}{4}$=5,
在Rt△ADO中,AO=$\sqrt{A{D}^{2}+O{D}^{2}}$=$\sqrt{{5}^{2}+(\frac{15}{4})^{2}}$=$\frac{25}{4}$.
∵$\frac{1}{2}$AD•OD=$\frac{1}{2}$DF•AO,
∴DF=$\frac{AD•OD}{AO}$=$\frac{5×\frac{15}{4}}{\frac{25}{4}}$=3.
故选:A.

点评 本题考查与圆有关的线段长的求法,考查直线、圆、切割线定理、相交线定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网