题目内容
3.已知变量x、y满足$\left\{\begin{array}{l}{x≤1}\\{x-2y+3≥0}\\{y≥-1}\end{array}\right.$,则z=2x-y的最大值为( )| A. | -9 | B. | -3 | C. | 0 | D. | 3 |
分析 作出可行域,平移目标直线可得取最值时的条件,求交点代入目标函数即可.
解答 解:好处满足满足$\left\{\begin{array}{l}{x≤1}\\{x-2y+3≥0}\\{y≥-1}\end{array}\right.$的平面区域,如图示:![]()
由z=2x-y得y=2x-z,
结合图象直线过(1,-1)时,z最大,
则z=2x-y的最大值为3,
故选:D.
点评 本题考查简单线性规划,准确作图是解决问题的关键,属中档题.
练习册系列答案
相关题目
13.甲口袋内有大小相等的2个红球和3个白球,乙口袋内装有大小相等的1个红球和2个白球,从两个口袋中各摸出1个球,那么$\frac{7}{15}$等于( )
| A. | 2个球都是白球的概率 | B. | 2个球中恰好有1个是白球的概率 | ||
| C. | 2个球都不是白球的概率 | D. | 2个球至少有一个白球的概率 |
14.已知实数x,y满足$\left\{\begin{array}{l}{x-y≤0}\\{x+y-5≥0}\\{y≤3}\end{array}\right.$,若不等式$\frac{(x+y)^2}{x^2+y^2}$≥a恒成立,则实数a的最大值为( )
| A. | 1 | B. | $\frac{2}{3}$ | C. | $\frac{25}{13}$ | D. | 2 |
18.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x-1}-2,(x≤1)}\\{-lo{g}_{2}(x+1),(x>1)}\end{array}\right.$,则f[f(3)]=( )
| A. | -$\frac{15}{8}$ | B. | -$\frac{15}{4}$ | C. | -$\frac{3}{4}$ | D. | -$\frac{1}{4}$ |
8.在正三棱柱ABC-A1B1C1中,若AB1⊥BC1,则下列关于直线A1C和AB1,BC1的关系的判断正确的为( )
| A. | A1C和AB1,BC1都垂直 | B. | A1C和AB1垂直,和BC1不垂直 | ||
| C. | A1C和AB1,BC1都不垂直 | D. | A1C和AB1不垂直,和BC1垂直 |
12.y=cos(2x+$\frac{π}{6}$)的最小正周期是( )
| A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | π | D. | 2π |
13.函数f(x)=2tan(2x+$\frac{π}{3}$)的最小正周期为( )
| A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | π | D. | 2π |