题目内容
(平面向量)已知|| a |
| b |
| a |
| b |
| a |
| b |
分析:根据|
|=|
|=|
-
|=1可得:|
-
|2=|
|2+|
|2-2
•
=1+1-2×1×1×cosθ=1,即cosθ=
.
由根据|
+2
|2=|
|2+|2
|2+2|
||2
|cosθ,代入即可得到答案.
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| 1 |
| 2 |
由根据|
| a |
| b |
| a |
| b |
| a |
| b |
解答:解:|
|=|
|=|
-
|=1
∵|
-
|2=|
|2+|
|2-2
•
=1+1-2×1×1×cosθ=1
∴cosθ=
|
+2
|2=|
|2+|2
|2+2|
||2
|cosθ=1+4+2=7
|
+2
|=
故答案为:
| a |
| b |
| a |
| b |
∵|
| a |
| b |
| a |
| b |
| a |
| b |
∴cosθ=
| 1 |
| 2 |
|
| a |
| b |
| a |
| b |
| a |
| b |
|
| a |
| b |
| 7 |
故答案为:
| 7 |
点评:本题主要考查向量的数量积运算法则和求模运算.属基础题.
练习册系列答案
相关题目