题目内容
已知实数集,集合,集合
(Ⅰ)当时,求;
(Ⅱ)设,求实数的取值范围.
函数在上递减,则实数m的取值范围 .
(本题满分16分,第1小题满分4分,第2小题的①满分6分,②满分6分. )
如图,椭圆,轴被曲线截得的线段长等于的长半轴长.
(1)求实数的值;
(2)设与轴的交点为,过坐标原点的直线与相交于点,直线
分别与相交与.
①证明:
②记△,△的面积分别是.若=,求的取值范围.
下列命题中正确的是( )
A.若为真命题,则为真命题
B.“,”是“”的充分必要条件
C.命题“若,则或”的逆否命题为“若或,则”
D.命题,使得,则,使得
(本小题满分10分)
已知椭圆的中心在坐标原点,右焦点为,、分别是椭圆的左右顶点,是
椭圆上的动点.
(Ⅰ)若面积的最大值为,求椭圆的方程;
(Ⅱ)双曲线与椭圆有相同的焦点,且离心率为,求双曲线的渐近线方程.
已知M为抛物线上一动点,为其对称轴上一点,直线MA与抛物线的另一个交点为N.当A为抛物线的焦点且直线MA与其对称轴垂直时,△OMN的面积为.
(Ⅰ)求抛物线的标准方程;
(Ⅱ)记,若t的值与M点位置无关, 则称此时的点A为“稳定点”,试求出所有“稳定点”,若没有,请说明理由.
已知,且,则=__________.
有一个底面半径为1、高为2的圆柱,点为这个圆柱底面圆的圆心,在这个圆柱内随机取一点,则点到点的距离大于1的概率为 .
设是等差数列的前n项和,若,则=_______.