题目内容

设首项为a1的正项数列{an}的前n项和为Sn,q为非零常数,已知对任意正整数n,m,Sn+m=Sm+qmSn总成立.
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)若不等的正整数m,k,h成等差数列,试比较amm•ahh与ak2k的大小;
(Ⅲ)若不等的正整数m,k,h成等比数列,试比较的大小.
【答案】分析:(Ⅰ)令n=m=1,得a2=qa1,令m=1,得Sn+1=S1+qSn(1),从而Sn+2=S1+qSn+1两式相减即可得出an+2=qan+1,进而可判断出数列{an}是等比数列
(Ⅱ)根据m,k,h成等差数列,可知m+h=2k,进而可判定,进而根据等比数列的通项公式分q大于、等于和小于1三种情况判断.
(Ⅲ)正整数m,k,h成等比数列,则m•h=k2,判断出,进而根据等差根据等比数列的通项公式分a1和q大于、等于和小于1三种情况判断.
解答:(Ⅰ)证:因为对任意正整数n,m,Sn+m=Sm+qmSn总成立,
令n=m=1,得S2=S1+qS1,则a2=qa1
令m=1,得Sn+1=S1+qSn(1),从而Sn+2=S1+qSn+1(2),
(2)-(1)得an+2=qan+1,(n≥1)
综上得an+1=qan(n≥1),所以数列{an}是等比数列
(Ⅱ)正整数m,k,h成等差数列,
则m+h=2k,
所以

①当q=1时,amm•ahh=a12k=ak2k
②当q>1时,
③当0<q<1时,
(Ⅲ)正整数m,k,h成等比数列,则m•h=k2,则
所以
①当a1=q,即时,=
②当a1>q,即时,=
③当a1<q,即时,=
点评:本题主要考查了等比关系的确定和等比数列的性质.等比数列常与不等式一块考查,应引起重视.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网