题目内容
求和:1+| 1 |
| 1+2 |
| 1 |
| 1+2+3 |
| 1 |
| 1+2+3+…+n |
分析:由an=
=
,知Sn=a1+a2+a3+…+an=2(
+
+
+…+
)
,再用裂项求和法能够得到这个数列的和.
| 1 |
| 1+2+3+…+n |
| 2 |
| n(n+1) |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n×(n+1) |
,再用裂项求和法能够得到这个数列的和.
解答:解:an=
=
,
∴Sn=a1+a2+a3+…+an
=2(
+
+
+…+
)
=2×(1-
+
-
+
-
+…+
-
)
=2(1-
)=
.
故答案:
.
| 1 |
| 1+2+3+…+n |
| 2 |
| n(n+1) |
∴Sn=a1+a2+a3+…+an
=2(
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n×(n+1) |
=2×(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=2(1-
| 1 |
| n+1 |
| 2n |
| n+1 |
故答案:
| 2n |
| n+1 |
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目