题目内容
求和:1+
+
+…+
=______.
| 1 |
| 1+2 |
| 1 |
| 1+2+3 |
| 1 |
| 1+2+3+…+n |
an=
=
,
∴Sn=a1+a2+a3+…+an
=2(
+
+
+…+
)
=2×(1-
+
-
+
-
+…+
-
)
=2(1-
)=
.
故答案:
.
| 1 |
| 1+2+3+…+n |
| 2 |
| n(n+1) |
∴Sn=a1+a2+a3+…+an
=2(
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n×(n+1) |
=2×(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=2(1-
| 1 |
| n+1 |
| 2n |
| n+1 |
故答案:
| 2n |
| n+1 |
练习册系列答案
相关题目