题目内容

函数y=x+
1
x
的极值情况是(  )
A、有极大值2,极小值-2
B、有极大值1,极小值-1
C、无极大值,但有极小值-2
D、有极大值2,无极小值
分析:求出函数的导函数,令导函数大于0求出x的范围即递增区间,令导函数小于0求出x的范围即递减区间,根据极值的定义求出函数的极值.
解答:解:函数的定义域为{x|x≠0}
因为y′=1-
1
x2
=
x2-1
x2

所以y′=1-
1
x2
=
x2-1
x2
=0得x=±1
当x<-1或x>1时,y′>0;当-1<x<0或0<x<1时,y′<0,
所以当x=-1时函数有极大值-2;当x=1时函数有极小值2.
故选A.
点评:利用导数求函数的极值,一般先求出导函数,令导数为0求出根,判断根左右两边的导数的符号,根据极值的定义加以判断.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网