搜索
题目内容
已知椭圆C:
的左、右焦点和短轴的一个端点构成边长为4的正三角形.
(1)求椭圆C的方程;
(2)过右焦点
的直线
与椭圆C相交于A、B两点,若
,求直线
的方程.
试题答案
相关练习册答案
(1)
;(2)
试题分析:(1)因为椭圆C:
的左、右焦点和短轴的一个端点构成边长为4的正三角形,所以可得到两个关于
的等式,从而求得
相应的值.
(2)因为过右焦点
的直线
与椭圆C相交于A、B两点,若
,所以点A,B的纵坐标
.所以通过假设直线方程联立椭圆方程即可得到一个关于x(或y)的二次方程,在结合韦达定理即可求得k的值即可求得结论.
试题解析:(1)设椭圆C的方程为
.
由题意得
,所以椭圆C的方程为
. 4分
(2)设直线的方程为
,代入椭圆方程得(3
+4)y
2
+12
-36=0.
设
,焦点
则根据
,得(2-
,-
)=2(
-2,
),
由此得-
=2
,
解方程得:
,所以
代入-
=2
,
得
=4,故
=
,所以直线的方程为
12分
练习册系列答案
名师学案英语阅读系列答案
口算题卡加应用题一日一练系列答案
53题霸专题集训系列答案
中考现代文阅读系列答案
语文全真模拟试卷系列答案
小学数学知识集锦系列答案
实战演练卷系列答案
口算小状元口算速算天天练系列答案
优才精英口算题卡应用题系列答案
初中单元测试卷系列答案
相关题目
设椭圆的方程为
,斜率为1的直线不经过原点
,而且与椭圆相交于
两点,
为线段
的中点.
(1)问:直线
与
能否垂直?若能,求
之间满足的关系式;若不能,说明理由;
(2)已知
为
的中点,且
点在椭圆上.若
,求
之间满足的关系式.
已知动直线
与椭圆
交于
、
两不同点,且△
的面积
=
,其中
为坐标原点.
(1)证明
和
均为定值;
(2)设线段
的中点为
,求
的最大值;
(3)椭圆
上是否存在点
,使得
?若存在,判断△
的形状;若不存在,请说明理由.
已知圆
,若椭圆
的右顶点为圆
的圆心,离心率为
.
(1)求椭圆C的方程;
(2)若存在直线
,使得直线
与椭圆
分别交于
两点,与圆
分别交于
两点,点
在线段
上,且
,求圆
的半径
的取值范围.
如图,已知椭圆
:
的离心率为
,点
为其下焦点,点
为坐标原点,过
的直线
:
(其中
)与椭圆
相交于
两点,且满足:
.
(1)试用
表示
;
(2)求
的最大值;
(3)若
,求
的取值范围.
已知抛物线
的顶在坐标原点,焦点
到直线
的距离是
(1)求抛物线
的方程;
(2)若直线
与抛物线
交于
两点,设线段
的中垂线与
轴交于点
,求
的取值范围.
已知椭圆
的左、右焦点分别为
、
,椭圆上的点
满足
,且
的面积
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)是否存在直线
,使
与椭圆
交于不同的两点
、
,且线段
恰被直线
平分?若存在,求出
的斜率取值范围;若不存在,请说明理由.
已知直线
l
:
y
=
x
+
,圆
O
:
x
2
+
y
2
=5,椭圆
E
:
=1(
a
>
b
>0)的离心率
e
=
,直线
l
被圆
O
截得的弦长与椭圆的短轴长相等.
(1)求椭圆
E
的方程;
(2)过圆
O
上任意一点
P
作椭圆
E
的两条切线,若切线都存在斜率,求证:两条切线的斜率之积为定值.
已知双曲线
的左焦点为F
1
,左、右顶点分别为A
1
、A
2
,P为双曲线上任意一点,则分别以线段PF
1
,A
1
A
2
为直径的两个圆的位置关系为( )
A.相交
B.相切
C.相离
D.以上情况都有可能
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案