题目内容

投掷两颗骰子,得到其向上的点数分别为m和n,则复数(m+ni)2为纯虚数的概率为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:按多项式乘法运算法则展开,将(m+ni)2化简为a+bi(a,b∈R)的形式,要求实部为0,虚部不为0,求出m、n的关系,求出满足关系的基本事件的个数,求出概率即可.
解答:因为(m+ni)2=m2-n2+2mni,根据复数的基本概念,有实部为0,且虚部显然不为0,所以n2=m2
故m=n则可以取1、2、3、4、5、6,共6种可能,
所以P==
故选C.
点评:本题考查复数的基本概念,古典概型及其概率计算公式,考查分析问题解决问题的能力,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网