题目内容
如图,在三棱锥P﹣ABC中,△PAB和△CAB都是以AB为斜边的等腰直角三角形,若AB=2PC=,D是PC的中点
(1)证明:AB⊥PC;
(2)求AD与平面ABC所成角的正弦值.
某化工厂引进一条先进生产线生产某种化工产品, 其生产的总成本(万元)与年产量(吨)之间的函数关系式可以近似地表示为,已知此生产线年产量最大为吨.
(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;
(2)若毎吨产品平均出厂价为万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?
下列函数是奇函数的是( )
A. B.
C. D.
某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )
A.56 B.60 C.140 D.120
已知函数f(x)=|x﹣a|+m|x+a|.
(Ⅰ)当m=a=﹣1时,求不等式f(x)≥x的解集;
(Ⅱ)不等式f(x)≥2(0<m<1)恒成立时,实数a的取值范围是{a|a≤﹣3或a≥3},求实数m的集合.
已知向量=(x,y),=(﹣1,2 ),且+=(1,3),则等于_______.
若x,y满足约束条件,则目标函数z=x﹣2y的最小值是( )
A.﹣5 B. C.0 D.2
已知tanα=﹣,则的值是.
已知曲线的参数方程为(为参数,),以坐标原点为极点,轴正半轴为极轴建立坐标系,曲线的极坐标方程为.
(1)若极坐标为的点在曲线上,求曲线与曲线的交点坐标;
(2)若点的坐标为,且曲线与曲线交于两点,求.