题目内容
【题目】已知点
,
是函数
的图像上任意不同的两点,依据图像可知,线段
总是位于
两点之间函数图像的上方,因此有结论
成立,运用类比的思想方法可知,若点
,
是函数
的图像上任意不同的两点,则类似地有_________成立.
【答案】![]()
【解析】
由类比推理的规则得出结论,本题中所用来类比的函数是一个变化率越来越大的函数,而要研究的函数是一个变化率越来越小的函数,其类比方式可知.
由题意知,点A、B是函数y=ax(a>1)的图象上任意不同两点,函数是变化率逐渐变大的函数,线段AB总是位于A、B两点之间函数图象的上方,因此有
成立;而函数y=sinx(x∈(0,π))其变化率逐渐变小,线段AB总是位于A、B两点之间函数图象的下方,故可类比得到结论
.
故答案为:
.
练习册系列答案
相关题目
【题目】某便利店计划每天购进某品牌鲜奶若干件,便利店每销售一瓶鲜奶可获利
元;若供大于求,剩余鲜奶全部退回,但每瓶鲜奶亏损
元;若供不应求,则便利店可从外调剂,此时每瓶调剂品可获利
元.
(1)若便利店一天购进鲜奶
瓶,求当天的利润
(单位:元)关于当天鲜奶需求量
(单位:瓶,
)的函数解析式;
(2)便利店记录了
天该鲜奶的日需求量
(单位:瓶,
)整理得下表:
日需求量 |
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
若便利店一天购进
瓶该鲜奶,以
天记录的各需求量的频率作为各需求量发生的概率,求当天利润在区间
内的概率.