ÌâÄ¿ÄÚÈÝ
(19)ÏÖÓмס¢ÒÒÁ½¸öÏîÄ¿£¬¶Ô¼×ÏîĿÿͶ×ÊÊ®ÍòÔª£¬Ò»ÄêºóÀûÈóÊÇ1.2ÍòÔª¡¢1.18ÍòÔª¡¢1.17ÍòÔªµÄ¸ÅÂÊ·Ö±ðΪ(I) Çó
¡¢
µÄ¸ÅÂÊ·Ö²¼ºÍÊýѧÆÚÍû
¡¢
;
(II) µ±
ʱ,Çó
µÄȡֵ·¶Î§.
±¾Ð¡ÌâÖ÷Òª¿¼²é¶þÏî·Ö²¼¡¢·Ö²¼ÁС¢ÊýѧÆÚÍûµÈ»ù´¡ÖªÊ¶£¬¿¼²éѧÉúÔËÓøÅÂÊ֪ʶ½â¾öʵ¼ÊÎÊÌâµÄÄÜÁ¦.
(¢ñ)½â·¨Ò»£º¦Î1µÄ¸ÅÂÊ·Ö²¼Îª
¦Î1 | 1.2 | 1.18 | 1.17 |
P |
|
|
|
E¦Î1=1.2¡Á
=1.18.
ÓÉÌâÉèµÃ¦Î-B£¨2£¬p£©£¬¼´¦ÎµÄ¸ÅÂÊ·Ö²¼Îª
¦Î | 0 | 1 | 2 |
P | £¨1-p£©2 | 2p£¨1-p£© | p2 |
¹Ê¦Î2µÄ¸ÅÂÊ·Ö¶øÎª
¦Î2 | 1.3 | 1.25 | 0.2 |
P | £¨1-p£©2 | 2p£¨1-p£© | p2 |
ËùÒÔ¦Î2µÄÊýѧÆÚÍûΪ
E¦Î2=1.3¡Á(1-p)2+1.25¡Á2p(1-p)+0.2¡Áp2
=1.3¡Á(1-2p+p2)+2.5¡Á(p-p2)+0.2¡Áp2
=-p2-0.1p+1.3.
½â·¨¶þ£º¦Î1µÄ¸ÅÂÊ·Ö²¼Îª
¦Î1 | 1.2 | 1.18 | 1.17 |
P |
|
|
|
E¦Î1=1.2¡Á
=1.18.
ÉèAi±íʾʼþ¡°µÚ1´Îµ÷Õû£¬¼Û¸ñϽµ¡±£¨i=1£¬2£©£¬Ôò
P£¨¦Î=0£©=P£¨
1£©P£¨
2£©=£¨1-p£©2£¬
P£¨¦Î=1£©=P£¨A1£©P£¨
2£©+P£¨
1£©P£¨A2£©
=2p£¨1-p£©
P£¨¦Î=2£©=P£¨A1£©P£¨A2£©=p2.
¹Ê¦Î2µÄ¸ÅÂÊ·Ö²¼Îª
¦Î2 | 1£®3 | 1£®25 | 0£®2 |
P | £¨1-p£©2 | 2p£¨1-p£© | p2 |
ËùÒÔ¦Î2µÄÊýѧÆÚÍûΪ
E¦Î2=1.3¡Á(1-p)2+1.25¡Á2p(1-p)+0.2¡Áp2
=1.3¡Á(1-2p+p2)+2.5¡Á(p-p2)+0.2¡ÁP2
= -p2-0.1p+1.3.
(¢ò)½â£ºÓÉE¦Î1£¼E¦Î2£¬µÃ
-p2-0.1p+1.3£¾1.18.
ÕûÀíµÃ
£¨p+0.4£©(p-0.3)£¼0,
½âµÃ
-0.4£¼p£¼0.3.
ÒòΪ0£¼p£¼1,ËùÒÔ£¬µ±E¦Î1£¼E¦Î2ʱ£¬pµÄȡֵ·¶Î§ÊÇ
0£¼p£¼0.3.