题目内容
【题目】如图是二次函数f(x)=x2﹣bx+a的部分图象,则函数g(x)=ex+f′(x)的零点所在的区间是( ) ![]()
A.(﹣1,0)
B.(0,1)
C.(1,2)
D.(2,3)
【答案】B
【解析】解:由图象可知,0<f(0)=a<1①,f(1)=0,即1﹣b+a=0②, 由①②可得1<b<2,
g(x)=ex+2x﹣b,且g(0)=1﹣b<0,g(1)=e+2﹣b>0,
又g(x)的图象连续不断,所以g(x)在(0,1)上必存在零点,
故选B.
【考点精析】掌握二次函数的性质和基本求导法则是解答本题的根本,需要知道当
时,抛物线开口向上,函数在
上递减,在
上递增;当
时,抛物线开口向下,函数在
上递增,在
上递减;若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.
练习册系列答案
相关题目
【题目】在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q1为0.25,在B处的命中率为q2 , 该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为:
ξ | 0 | 2 | 3 | 4 | 5 |
p | 0.03 | 0.24 | 0.01 | 0.48 | 0.24 |
(1)求q2的值;
(2)求随机变量ξ的数学期望Eξ;
(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.