题目内容
5.在平面直角坐标系,将曲线C1上的每一个点的横坐标保持不变,纵坐标缩短为原来的$\frac{1}{2}$,得到曲线C2,以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=2.(Ⅰ)求曲线C2的参数方程;
(Ⅱ)过原点O且关于y轴对称点两条直线l1与l2分别交曲线C2于A、C和B、D,且点A在第一象限,当四边形ABCD的周长最大时,求直线l1的普通方程.
分析 (Ⅰ)求出曲线C2的普通方程,即可求曲线C2的参数方程;
(Ⅱ)设四边形ABCD的周长为l,设点A(2cosα,sinα),则l=8cosα+4sinα=4$\sqrt{5}$sin(α+θ),cosθ=$\frac{1}{\sqrt{5}}$,sinθ=$\frac{2}{\sqrt{5}}$,由此,可求直线l1的普通方程.
解答 解:(Ⅰ)曲线C1的极坐标方程为ρ=2,直角坐标方程为x2+y2=4,将曲线C1上的每一个点的横坐标保持不变,纵坐标缩短为原来的$\frac{1}{2}$,得到曲线C2:$\frac{{x}^{2}}{4}$+y2=1,
∴曲线C2的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$(α为参数);
(Ⅱ)设四边形ABCD的周长为l,设点A(2cosα,sinα),则l=8cosα+4sinα=4$\sqrt{5}$sin(α+θ),cosθ=$\frac{1}{\sqrt{5}}$,sinθ=$\frac{2}{\sqrt{5}}$,
α+θ=$\frac{π}{2}$+2kπ(k∈Z)时,l取得最大值,此时cosα=sinθ=$\frac{2}{\sqrt{5}}$,sinα=cosθ=$\frac{1}{\sqrt{5}}$,A($\frac{4}{\sqrt{5}}$,$\frac{1}{\sqrt{5}}$),
∴直线l1的普通方程为y=$\frac{1}{4}$x.
点评 本题考查求直线l1的普通方程,考查参数方程的运用,属于中档题.
练习册系列答案
相关题目
15.已知α是第二象限角,且$|{cos\frac{α}{3}}|=-cos\frac{α}{3}$,则$\frac{α}{3}$是( )
| A. | 第一象限角 | B. | 第二象限角 | C. | 第三象限角 | D. | 第四象限角 |
10.
某几何体的三视图如图所示,则下列说法正确的是( )
①该几何体的体积为$\frac{1}{6}$;
②该几何体为正三棱锥;
③该几何体的表面积为$\frac{3}{2}$+$\sqrt{3}$;
④该几何体外接球的表面积为3π
①该几何体的体积为$\frac{1}{6}$;
②该几何体为正三棱锥;
③该几何体的表面积为$\frac{3}{2}$+$\sqrt{3}$;
④该几何体外接球的表面积为3π
| A. | ①②③ | B. | ①②④ | C. | ①③④ | D. | ②③④ |
17.已知F1,F2为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,以F1F2为直径的圆与双曲线右支的一个交点为P,PF1与双曲线相交于点Q,且|PQ|=2|QF1|,则该双曲线的离心率为 ( )
| A. | $\sqrt{5}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{5}}{2}$ |
15.已知等比数列{an}的前n项和为Sn,若S3=7,S6=63,则数列{nan}的前n项和为( )
| A. | -3+(n+1)×2n | B. | 3+(n+1)×2n | C. | 1+(n+1)×2n | D. | 1+(n-1)×2n |