题目内容
若O为△ABC所在平面内一点,且满足(
-
)(
+
-2
)=0,则△ABC的形状为______.
| OB |
| OC |
| OB |
| OC |
| OA |
∵(
-
)•(
+
-2
)
=(
-
)[(
-
)+(
-
)]
=(
-
)•(
+
)=
•(
+
)
=(
-
)•(
+
)=|
|2-|
|2=0,
∴|
|=|
|,
∴△ABC为等腰三角形.
故答案为:等腰三角形
| OB |
| OC |
| OB |
| OC |
| OA |
=(
| OB |
| OC |
| OB |
| OA |
| OC |
| OA |
=(
| OB |
| OC |
| AB |
| AC |
| CB |
| AB |
| AC |
=(
| AB |
| AC |
| AB |
| AC |
| AB |
| AC |
∴|
| AB |
| AC |
∴△ABC为等腰三角形.
故答案为:等腰三角形
练习册系列答案
相关题目