题目内容
已知复数z=-
+
i(i为虚单位),满足az2+bz+1=0(a,b为实数),则a+b=______.
| 1 |
| 2 |
| ||
| 2 |
∵复数z=-
+
i(i为虚单位),满足az2+bz+1=0(a,b为实数),
∴a(-
-
i)+b(-
+
i)+1=0,∴-
-
+1+(
-
)i=0,
∴-
-
+1=0,
-
=0,∴a+b=2,故答案为 2.
| 1 |
| 2 |
| ||
| 2 |
∴a(-
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| a |
| 2 |
| b |
| 2 |
| ||
| 2 |
| ||
| 2 |
∴-
| a |
| 2 |
| b |
| 2 |
| ||
| 2 |
| ||
| 2 |
练习册系列答案
相关题目