题目内容

17. 已知正四棱柱ABCDA1B1C1D1AB=1,AA1=2,点ECC1中点,点FBD1中点.

(Ⅰ)证明EFBD1CC1的公垂线;

(Ⅱ)求点D1到面BDE的距离.

 

(Ⅰ)证法一:取BD中点M,连结MCFM

FBD1中点,

FMD1DFMD1D.

ECCC1ECMC

∴四边形EFMC是矩形,

EFCC1.                                                                    

CM⊥面DBD1

EF⊥面DBD1

BD1DBD1

EFBD1.

EFBD1CC1的公垂线.                                         

证法二:建立如图的坐标系,得

B(0,1,0),D1(1,0,2),F,1),C1(0,0,2),E(0,0,1).

=(,0),=(0,0,2),

=(1,-1,2).                                                         

·=0,·=0,

EFCC1EFBD1.

EFCC1BD1的公垂线.                                        

 

(Ⅱ)解:连结ED1,有=.

由(Ⅰ)知EF⊥面DBD1,设点D1到面BDE的距离为d

 

SDBE·d=·EF.                                                  

 

AA1=2,AB=1,

 

BD=BE=ED=EF=.

 

=··2=

 

SDBE=··(2=.

 

d==.

 

故点D1到平面BDE的距离为


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网