题目内容

已知点P是椭圆
y2
5
+
x2
4
=1上的一点,F1F2是焦点
,且∠F1PF2=30°,求△F1PF2的面积.
由题a=
5
,b=2
,∴c=
a2-b2
=1
又∵P在椭圆上,∴|PF1|+|PF2|=2a=2
5
由余弦定理得:|PF1|2+|PF2|2-2|PF1|•|PF2|•cos30°=|F1F2|2=(2c)2=4由上述两式可得:|PF1|•|PF2|=16(2-
3
)
S△PF1F2=
1
2
|PF1|•|PF2|•sin300=8-4
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网