题目内容
4.cos80°cos130°-cos10°sin130°等于( )| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 利用诱导公式,两角差的余弦函数公式化简,利用特殊角的三角函数值即可计算求值.
解答 解:cos80°cos130°-cos10°sin130°
=cos80°cos130°-sin80°sin130°
=cos(80°+130°)
=cos(180°+30°)
=-$\frac{\sqrt{3}}{2}$.
故选:C.
点评 本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.
练习册系列答案
相关题目
1.已知函数f(x)=sinx(-$\frac{π}{2}$$<x<\frac{π}{2}$),满足f(x)<$\frac{\sqrt{3}}{2}$的x的取值范围是( )
| A. | (-$\frac{π}{6}$,$\frac{π}{6}$) | B. | (-$\frac{π}{2}$,$\frac{π}{6}$) | C. | (-$\frac{π}{2}$,$\frac{π}{3}$) | D. | (-$\frac{π}{3}$,$\frac{π}{3}$) |
5.若一组数据2,4,6,8的中位数、方差分别为m,n,且ma+nb=1(a>0,b>0),则$\frac{1}{a}$+$\frac{1}{b}$的最小值为( )
| A. | 6+2$\sqrt{3}$ | B. | 4$+3\sqrt{5}$ | C. | 9$+4\sqrt{5}$ | D. | 20 |
16.
已知F1,F2分别为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点,若存在过F1的直线分别交双曲线C的左、右支于A,B两点,使得∠BAF2=∠BF2F1,则双曲线C的离心率e的取值范围是( )
| A. | (3,+∞) | B. | (1,2+$\sqrt{5}$) | C. | (3,2+$\sqrt{5}$) | D. | (1,3) |
13.若复数z满足z=$\frac{|8+6i|}{6-8i}$(i是虚数单位),则z的虚部为( )
| A. | 4 | B. | $\frac{4}{5}$ | C. | -4 | D. | -$\frac{4}{5}$ |
14.若实数x,y满足不等式组$\left\{\begin{array}{l}x+3y-3≤0\\ x-y+1≥0\\ y≥1\end{array}\right.$,则z=2|x|+y的取值范围是( )
| A. | [-1,3] | B. | [1,3] | C. | [-1,11] | D. | [-5,11] |