题目内容

设向量
a
b
满足|
a
|=1,|
a
-
b
|=
3
a
•(
a
-
b
)=0,则|2
a
+
b
|=
2
3
2
3
分析:
a
•(
a
-
b
)
=0,可得
a
b
=
a
2
=1,由|
a
-
b
|=
3
可求得
b
2
=4,先求出(2
a
+
b
)2
,然后求|2
a
+
b
|.
解答:解:由
a
•(
a
-
b
)
=0,可得
a
b
=
a
2
=1,
由|
a
-
b
|=
3
,可得(
a
-
b
)2
=3,即
a
2
-2
a
b
+
b
2
=3
,解得
b
2
=4,
(2
a
+
b
)2=4
a
2
+4
a
b
+
b
2
=12,故|2
a
+
b
|
=2
3

故答案为:2
3
点评:本题考查平面向量数量积的性质及其运算律,考查学生的运算求解能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网