题目内容
设向量
,
满足|
|=1,|
-
|=
,
•(
-
)=0,则|2
+
|=
| a |
| b |
| a |
| a |
| b |
| 3 |
| a |
| a |
| b |
| a |
| b |
2
| 3 |
2
.| 3 |
分析:由
•(
-
)=0,可得
•
=
2=1,由|
-
|=
可求得
2=4,先求出(2
+
)2,然后求|2
+
|.
| a |
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| 3 |
| b |
| a |
| b |
| a |
| b |
解答:解:由
•(
-
)=0,可得
•
=
2=1,
由|
-
|=
,可得(
-
)2=3,即
2-2
•
+
2=3,解得
2=4,
故(2
+
)2=4
2+4
•
+
2=12,故|2
+
|=2
.
故答案为:2
.
| a |
| a |
| b |
| a |
| b |
| a |
由|
| a |
| b |
| 3 |
| a |
| b |
| a |
| a |
| b |
| b |
| b |
故(2
| a |
| b |
| a |
| a |
| b |
| b |
| a |
| b |
| 3 |
故答案为:2
| 3 |
点评:本题考查平面向量数量积的性质及其运算律,考查学生的运算求解能力.
练习册系列答案
相关题目