题目内容

12.已知△ABC中,AC=2,A=120°,cosB=$\sqrt{3}$sinC.
(1)求边AB的长;
(2)设D是BC边上的一点,且△ACD的面积为$\frac{3\sqrt{3}}{4}$,求∠ADC的正弦值.

分析 (1)A=120°,cosB=$\sqrt{3}$sinC,求出tanC=$\frac{\sqrt{3}}{3}$,得出∴△ABC是以A为顶角的等腰三角形可得边AB的长;
(2)△ACD的面积为$\frac{3\sqrt{3}}{4}$,求出CD,根据勾股定理可求得AD,在△ADC中利用正弦定理,求∠ADC的正弦值.

解答 (1)在△ABC中,A=120°,
∴cosB=cos(π-A-C)=cos(60°-C)=$\frac{1}{2}$cosC+$\frac{\sqrt{3}}{2}$sinC①
∵cosB=$\sqrt{3}$sinC②.
联立①②可得$\frac{1}{2}$cosC+$\frac{\sqrt{3}}{2}$sinC=$\sqrt{3}$sinC
解得tanC=$\frac{\sqrt{3}}{3}$
∵在在△ABC中,A=120°
∴C<60°
∴C=30°
∴B=30°.
∴△ABC是以A为顶角的等腰三角形.
∴AB=2.
(2)如图,AE是等腰三角形ABC的高和中线,也是△ACD的高.
∵B=30°
∴在Rt△ABE中,AE=sin30°AB=1,BE=cos30•AB=$\sqrt{3}$
∴CE=$\sqrt{3}$
∵S△ACD=$\frac{3\sqrt{3}}{4}$
即$\frac{1}{2}$×CD×AE=$\frac{3\sqrt{3}}{4}$
∴CD=$\frac{3\sqrt{3}}{2}$
∴DE=CD-CE=$\frac{3\sqrt{3}}{2}$-$\sqrt{3}$=$\frac{\sqrt{3}}{2}$
∴在Rt△ADE中,AD=$\frac{1}{\sqrt{A{E}^{2}+D{E}^{2}}}$=$\frac{1}{\sqrt{(1)^{2}+(\frac{\sqrt{3}}{2})^{2}}}$=$\frac{2\sqrt{7}}{7}$
∵△ADC中,根据正弦定理可得:$\frac{AC}{sin∠ADC}$=$\frac{AD}{sin∠C}$
∴sin∠ADC=$\frac{\sqrt{7}}{2}$

点评 本题考查正弦定理的运用,考查三角形面积的计算,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网