题目内容

如图,为正方体。任作平面与对角线垂直,使得与正方体的每个面都有公共点,记这样得到的截面多边形的面积为S,周长为.则(       )

A.S为定值,不为定值           B.S不为定值,为定值

C.S与均为定值                 D.S与均不为定值

B


解析:

将正方体切去两个正三棱锥后,得到一个以平行平面为上、下底面的几何体V,V的每个侧面都是等腰直角三角形,截面多边形W的每一条边分别与V的底面上的一条边平行,将V的侧面沿棱剪开,展平在一张平面上,得到一个,而多边形W的周界展开后便成为一条与平行的线段(如图中),显然,故为定值。

    当位于中点时,多边形W为正六边形,而当移至处时,W为正三角形,易知周长为定值的正六边形与正三角形面积分别为,故S不为定值。选B。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网