题目内容
过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A、B交其准线于点C,若|BC|=2|BF|且|AF|=3,则P=
- A.

- B.

- C.

- D.

D
分析:分别过A、B作准线的垂线,利用抛物线定义将A、B到焦点的距离转化为到准线的距离,结合已知比例关系,在直角三角形ADC中求线段PF长度即可得p值
解答:如图:
过A作AD垂直于抛物线的准线,垂足为D,过B作BE垂直于抛物线的准线,垂足为E,P为准线与x轴的焦点,
∴p=|PF|
由抛物线的定义,|BF|=|BE|,|AF|=|AD|=3
∵|BC|=2|BF|,∴|BC|=2|BE|,∴∠DCA=30°
∴|AC|=2|AD|=6,∴|CF|=6-3=3
∴|PF|=
=
即p=
故选 D
点评:本题考查了抛物线的定义及其应用,抛物线的几何性质,过焦点的弦的弦长关系,转化化归的思想方法
分析:分别过A、B作准线的垂线,利用抛物线定义将A、B到焦点的距离转化为到准线的距离,结合已知比例关系,在直角三角形ADC中求线段PF长度即可得p值
解答:如图:
∴p=|PF|
由抛物线的定义,|BF|=|BE|,|AF|=|AD|=3
∵|BC|=2|BF|,∴|BC|=2|BE|,∴∠DCA=30°
∴|AC|=2|AD|=6,∴|CF|=6-3=3
∴|PF|=
即p=
故选 D
点评:本题考查了抛物线的定义及其应用,抛物线的几何性质,过焦点的弦的弦长关系,转化化归的思想方法
练习册系列答案
相关题目
过抛物线y2=2px(p>0)的焦点F的直线l与抛物线在第一象限的交点为A,与抛物线的准线的交点为B,点A在抛物线准线上的射影为C,若
=
,
•
=48,则抛物线的方程为( )
| AF |
| FB |
| BA |
| BC |
| A、y2=4x | ||
| B、y2=8x | ||
| C、y2=16x | ||
D、y2=4
|
过抛物线y2=2px(p>0)的焦点F作直线交抛物线于A、B两点,O为抛物线的顶点.则△ABO是一个( )
| A、等边三角形 | B、直角三角形 | C、不等边锐角三角形 | D、钝角三角形 |