题目内容
求函数f(x)=sin2x+
sinxcosx在区间[
,
]上的最大值.
| 3 |
| π |
| 4 |
| π |
| 2 |
f(x)=sin2x+
sin xcos x=
+
sin 2x
=sin(2x-
)+
.
∵
≤x≤
,∴
≤2x-
≤
π.
当sin(2x-
)=1,即2x-
=
时,此时x=
,
函数f(x)取到最大值:f(x)max=1+
=
.
| 3 |
| 1-cos2x |
| 2 |
| ||
| 2 |
=sin(2x-
| π |
| 6 |
| 1 |
| 2 |
∵
| π |
| 4 |
| π |
| 2 |
| π |
| 3 |
| π |
| 6 |
| 5 |
| 6 |
当sin(2x-
| π |
| 6 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
函数f(x)取到最大值:f(x)max=1+
| 1 |
| 2 |
| 3 |
| 2 |
练习册系列答案
相关题目