题目内容
如图,已知半圆O的半径为2,P是直径BC延长线上的一点,PA与半圆O相切于点A, H是OC的中点,AH⊥BC.
(1)求证:AC是∠PAH的平分线;
(2)求PC的长.
已知函数y=f(x)(x≠0)对于任意的x,y∈R且x,y≠0满足f(xy)=f(x)+f(y).
(Ⅰ)求f(1),f(﹣1)的值;
(Ⅱ)判断函数y=f(x),(x≠0)的奇偶性;
(Ⅲ)若函数y=f(x)在(0,+∞)上是增函数,解不等式f(x)+f(x﹣5)≤0.
原命题“若,则”的逆否命题是( )
A.若,则 B.若,则
C.若,则 D.若,则
若直线是函数图象的一条对称轴,则的值可以是( )
A. B. C. D.
在平面直角坐标系xOy中,点P(x0,y0)在曲线y=x2(x>0)上.已知A(0,-1),,n∈N*.记直线APn的斜率为kn.
(1)若k1=2,求P1的坐标;
(2)若 k1为偶数,求证:kn为偶数.
如图,在直三棱柱ABC-A1B1C1中,D为棱BC上一点.
(1)若AB=AC,D为棱BC的中点,求证:平面ADC1⊥平面BCC1B1;
(2)若A1B∥平面ADC1,求的值.
如图,已知A,B分别是函数f(x)=sinωx(ω>0)在y轴右侧图象上的第一个最高点和第一个最低点,且∠AOB=,则该函数的周期是 .
双曲线的两条渐近线的夹角为
正项数列:,满足: 是公差为的等差数列, 是公比为2的等比数列.
(1)若,求数列的所有项的和;
(2)若,求的最大值;
(3)是否存在正整数,满足?若存在,求出的值;若不存在,请说明理由.