题目内容

5.一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了4次试验.收集的数据如下:
零件个数x(个)1234
加工时间y(小时)2358
(Ⅰ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(Ⅱ)现需生产20件此零件,预测需用多长时间?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$x)

分析 (Ⅰ)分别求出$\overline{x}$,$\overline{y}$,代入公式计算即可;(Ⅱ)将x=20代入$\widehat{y}$=2x-0.5,计算即可.

解答 解:(Ⅰ)$\overline x$=$\frac{1+2+3+4}{4}$=2.5,$\overline{y}$=$\frac{2+3+5+8}{4}$=4.5,…(2分)
$\frac{{{\sum_{i=1}^{4}x}_{i}y}_{i}-4\overline{x}\overline{y}}{{{\sum_{i=1}^{4}x}_{i}}^{2}-{4\overline{x}}^{2}}$=$\frac{(2+6+15+32)-4×2.5×4.5}{(1+4+9+16)-4×2.5×2.5}$=2,…(5分)
$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=4.5-2×2.5=-0.5,…(7分)
所以$\widehat{y}$=2x-0.5.…(8分)
(Ⅱ)因为$\widehat{y}$=2×20-0.5=39.5(小时),…(9分)
所以生产20件此零件,预测需用39.5小时.…(10分)

点评 本题考查了线性规划问题,考查数据的处理,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网