题目内容
如图是函数在一个周期内的图象,则其解析式是______ ______.
方程的解的个数是________.
若直线与直线平行, 则
函数
(I)求函数的极值
(II)若,对于任意,且,都有,求实数的取值范围
已知向量,若与平行,则实数= .
如图,过原点的直线与函数的图象交于两点,过作轴的垂线交函数的图象于点,若平行于轴,则点的坐标是 _ .
函数.
(1)若,函数在区间上是单调递增函数,求实数的取值范围;
(2)设,若对任意恒成立,求的取值范围.
某个公园有个池塘,其形状为直角△ABC,∠C=90°,AB=2百米,BC=1百米. (1)现在准备养一批供游客观赏的鱼,分别在AB、BC、CA上取点D,E,F,如图(1),使得
EF‖AB,EF⊥ED,在△DEF喂食,求△DEF 面积S△DEF的最大值; (2)现在准备新建造一个荷塘,分别在AB,BC,CA上取点D,E,F,如图(2),建造△DEF
连廊(不考虑宽度)供游客休憩,且使△DEF为正三角形,求△DEF边长的最小值.
某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为元,则销售量(单位:件)与零售价(单位:元)有如下关系:,问该商品零售价定为多少元时毛利润最大,并求出最大毛利润.(毛利润销售收入进货支出)