题目内容
设椭圆+=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为,则此椭圆的方程为________.
+=1
设两条直线的方程分别为x+y+a=0和x+y+b=0,已知a,b是关于x的方程x2+x+c=0的两个实数根,且0≤c≤,则这两条直线之间的距离的最大值和最小值分别为( ).
A., B., C., D.,
直线y=kx+1与圆x2+y2-2y=0的位置关系是( ).
A.相交 B.相切 C.相离 D.取决于k的值
已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.
(1)求椭圆离心率的范围;
(2)求证:△F1PF2的面积只与椭圆的短轴长有关.
已知△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是( ).
A.2 B.6 C.4 D.12
已知椭圆:+=1(0<b<2),左、右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若|BF2|+|AF2|的最大值为5,则b的值是( ).
A.1 B. C. D.
已知F是双曲线-=1的左焦点,A(1,4),P是双曲线右 支上的动点,则|PF|+|PA|的最小值为 ( ).
A.5 B.5+4 C.7 D.9
已知双曲线-=1的一个焦点是(0,2),椭圆-=1的焦距等于4,则n=________.
已知动圆圆心在抛物线y2=4x上,且动圆恒与直线x=-1相切,则此动圆必过定点( ).
A.(2,0) B.(1,0) C.(0,1) D.(0,-1)